The Agent Reliability Chasm

James Phoenix
James Phoenix

Building a demo agent is easy. Building a reliable agent is exponentially harder.


The Core Problem

Creating a basic AI agent is simple, but achieving production-ready reliability is exponentially harder.

“Up to 95% of AI agent proof-of-concepts fail to make it to production”—primarily due to reliability issues.


The Exponential Reliability Problem

Individual action reliability compounds catastrophically across multi-step tasks:

Actions Per-Action Success Overall Success
5 95% 77%
10 95% 60%
20 95% 36% (worse than coin flip)
30 95% 21%
Overall = (Per-Action)^N

0.95^10 = 0.60
0.95^20 = 0.36
0.95^30 = 0.21

This explains why demo agents fail in production—real workflows demand complex sequences where compound failures become inevitable.


The Four-Turn Framework

Reliable agents must operate through structured turns:

┌─────────────────────────────────────────────────────────────┐
│  1. UNDERSTAND STATE   →  Verify context and requirements   │
│  2. DECIDE ACTION      →  Choose appropriate response       │
│  3. EXECUTE            →  Perform the task                  │
│  4. VERIFY OUTCOME     →  Confirm success                   │
└─────────────────────────────────────────────────────────────┘

Most basic agents skip steps 1 and 4—understanding and verification—which is exactly where reliability collapses.


Pre-Action Checks (Step 1)

Before acting, agents should:

Check Example
Required info available? “Which order?” before shipping changes
Ambiguous request? Detect when clarification needed
Prerequisites met? Check code validity before applying discount
Authorization confirmed? Verify permissions before destructive action
Availability verified? Check calendar before scheduling

Pattern:

async function preActionChecks(intent: Intent): Promise<CheckResult> {
  const checks = [
    verifyRequiredInfo(intent),
    detectAmbiguity(intent),
    validatePrerequisites(intent),
    confirmAuthorization(intent),
  ];

  const results = await Promise.all(checks);
  const failed = results.filter(r => !r.passed);

  if (failed.length > 0) {
    return { proceed: false, issues: failed };
  }

  return { proceed: true };
}

Post-Action Verification (Step 4)

Agents must confirm actions actually succeeded:

Verification Why
Check outcomes, not just API responses APIs can return 200 but fail silently
Verify state consistency Ensure system state matches expectations
Detect silent failures Partial successes that look complete
Recognize business logic reversions Changes that get reverted by other systems

Anti-pattern:

// BAD: Trusting API response
const response = await api.updateOrder(orderId, changes);
if (response.status === 200) {
  return "Order updated"; // Might not actually be true!
}

Pattern:

// GOOD: Verify actual outcome
const response = await api.updateOrder(orderId, changes);
if (response.status === 200) {
  // Actually check the order reflects changes
  const order = await api.getOrder(orderId);
  const verified = verifyChangesApplied(order, changes);

  if (!verified) {
    return { success: false, reason: "Changes not reflected in order state" };
  }

  return { success: true };
}

Turn Transition Challenges

Context Degradation

Agents forget previous information, forcing users to repeat themselves.

Solution: Explicit state tracking

interface AgentState {
  originalGoal: string;
  currentStep: number;
  completedSteps: Step[];
  gatheredContext: Map<string, any>;
  checkpoints: Checkpoint[];
}

Goal Drift

Agents lose original objectives and get sidetracked by tangential tasks.

Solution: Progress monitoring

function checkGoalAlignment(
  currentAction: Action,
  originalGoal: string,
  state: AgentState
): AlignmentResult {
  // Score how well current action serves original goal
  const alignment = scoreAlignment(currentAction, originalGoal);

  if (alignment < DRIFT_THRESHOLD) {
    return {
      drifting: true,
      suggestion: `Current action "${currentAction.name}" may not serve goal "${originalGoal}"`
    };
  }

  return { drifting: false };
}

Architectural Solutions

1. Defensive Design

Assume LLM hallucinations will occur. Build systems that handle them gracefully.

Udemy Bestseller

Learn Prompt Engineering

My O'Reilly book adapted for hands-on learning. Build production-ready prompts with practical exercises.

4.5/5 rating
306,000+ learners
View Course
// Don't trust LLM output directly
const llmSuggestion = await llm.suggestAction(context);

// Validate against allowed actions
if (!isValidAction(llmSuggestion)) {
  return fallbackAction();
}

// Constrain to safe parameter ranges
const sanitizedParams = constrainParameters(llmSuggestion.params);

2. First-Class Verification

Make verification a core feature, not an afterthought.

class ReliableAgent {
  async execute(task: Task): Promise<Result> {
    // Step 1: Understand
    const understanding = await this.understand(task);
    if (!understanding.confident) {
      return this.requestClarification(understanding.questions);
    }

    // Step 2: Decide
    const plan = await this.decide(understanding);

    // Step 3: Execute
    const execution = await this.executeWithRetry(plan);

    // Step 4: Verify (MANDATORY)
    const verification = await this.verify(execution, task);
    if (!verification.success) {
      return this.handleFailure(verification, task);
    }

    return execution;
  }
}

3. Graceful Failure and Escalation

Know when to stop and ask for help.

const ESCALATION_TRIGGERS = {
  consecutiveFailures: 3,
  confidenceThreshold: 0.5,
  riskLevel: 'high',
};

function shouldEscalate(state: AgentState): boolean {
  return (
    state.consecutiveFailures >= ESCALATION_TRIGGERS.consecutiveFailures ||
    state.currentConfidence < ESCALATION_TRIGGERS.confidenceThreshold ||
    state.currentAction.riskLevel === ESCALATION_TRIGGERS.riskLevel
  );
}

4. Observable Behavior

Comprehensive logging for debugging and improvement.

interface ActionLog {
  timestamp: Date;
  action: string;
  input: any;
  output: any;
  preChecks: CheckResult[];
  postVerification: VerificationResult;
  duration: number;
  confidence: number;
}

Improving Per-Action Reliability

To improve overall reliability, focus on per-action success rate:

Current Target 10-Action Workflow
95% 99% 60% → 90%
95% 99.5% 60% → 95%
95% 99.9% 60% → 99%

Every 1% improvement in per-action reliability compounds dramatically.

Strategies:

  1. Reduce task complexity (fewer steps per task)
  2. Add pre-action validation
  3. Add post-action verification
  4. Implement retry with learning
  5. Use RALPH Loop for fresh context each task

The Reliability Stack

┌─────────────────────────────────────────────────────────────┐
│  Layer 4: Human Escalation                                  │
│  "Know when to ask for help"                                │
├─────────────────────────────────────────────────────────────┤
│  Layer 3: Post-Action Verification                          │
│  "Confirm the outcome, not just the response"               │
├─────────────────────────────────────────────────────────────┤
│  Layer 2: Pre-Action Validation                             │
│  "Check before you act"                                     │
├─────────────────────────────────────────────────────────────┤
│  Layer 1: Task Decomposition                                │
│  "Small tasks = fewer failure points"                       │
└─────────────────────────────────────────────────────────────┘

Key Insight

Demo agents skip understanding and verification because those steps don’t look impressive. Production agents invest heavily in both because that’s where reliability lives.


Related


External References

Topics
Agent ReliabilityAi AgentsAi FrameworksProduction ReadinessWorkflow Complexity

More Insights

Cover Image for Thought Leaders

Thought Leaders

People to follow for compound engineering, context engineering, and AI agent development.

James Phoenix
James Phoenix
Cover Image for Systems Thinking & Observability

Systems Thinking & Observability

Software should be treated as a measurable dynamical system, not as a collection of features.

James Phoenix
James Phoenix