Building a demo agent is easy. Building a reliable agent is exponentially harder.
The Core Problem
Creating a basic AI agent is simple, but achieving production-ready reliability is exponentially harder.
“Up to 95% of AI agent proof-of-concepts fail to make it to production”—primarily due to reliability issues.
The Exponential Reliability Problem
Individual action reliability compounds catastrophically across multi-step tasks:
| Actions | Per-Action Success | Overall Success |
|---|---|---|
| 5 | 95% | 77% |
| 10 | 95% | 60% |
| 20 | 95% | 36% (worse than coin flip) |
| 30 | 95% | 21% |
Overall = (Per-Action)^N
0.95^10 = 0.60
0.95^20 = 0.36
0.95^30 = 0.21
This explains why demo agents fail in production—real workflows demand complex sequences where compound failures become inevitable.
The Four-Turn Framework
Reliable agents must operate through structured turns:
┌─────────────────────────────────────────────────────────────┐
│ 1. UNDERSTAND STATE → Verify context and requirements │
│ 2. DECIDE ACTION → Choose appropriate response │
│ 3. EXECUTE → Perform the task │
│ 4. VERIFY OUTCOME → Confirm success │
└─────────────────────────────────────────────────────────────┘
Most basic agents skip steps 1 and 4—understanding and verification—which is exactly where reliability collapses.
Pre-Action Checks (Step 1)
Before acting, agents should:
| Check | Example |
|---|---|
| Required info available? | “Which order?” before shipping changes |
| Ambiguous request? | Detect when clarification needed |
| Prerequisites met? | Check code validity before applying discount |
| Authorization confirmed? | Verify permissions before destructive action |
| Availability verified? | Check calendar before scheduling |
Pattern:
async function preActionChecks(intent: Intent): Promise<CheckResult> {
const checks = [
verifyRequiredInfo(intent),
detectAmbiguity(intent),
validatePrerequisites(intent),
confirmAuthorization(intent),
];
const results = await Promise.all(checks);
const failed = results.filter(r => !r.passed);
if (failed.length > 0) {
return { proceed: false, issues: failed };
}
return { proceed: true };
}
Post-Action Verification (Step 4)
Agents must confirm actions actually succeeded:
| Verification | Why |
|---|---|
| Check outcomes, not just API responses | APIs can return 200 but fail silently |
| Verify state consistency | Ensure system state matches expectations |
| Detect silent failures | Partial successes that look complete |
| Recognize business logic reversions | Changes that get reverted by other systems |
Anti-pattern:
// BAD: Trusting API response
const response = await api.updateOrder(orderId, changes);
if (response.status === 200) {
return "Order updated"; // Might not actually be true!
}
Pattern:
// GOOD: Verify actual outcome
const response = await api.updateOrder(orderId, changes);
if (response.status === 200) {
// Actually check the order reflects changes
const order = await api.getOrder(orderId);
const verified = verifyChangesApplied(order, changes);
if (!verified) {
return { success: false, reason: "Changes not reflected in order state" };
}
return { success: true };
}
Turn Transition Challenges
Context Degradation
Agents forget previous information, forcing users to repeat themselves.
Solution: Explicit state tracking
interface AgentState {
originalGoal: string;
currentStep: number;
completedSteps: Step[];
gatheredContext: Map<string, any>;
checkpoints: Checkpoint[];
}
Goal Drift
Agents lose original objectives and get sidetracked by tangential tasks.
Solution: Progress monitoring
function checkGoalAlignment(
currentAction: Action,
originalGoal: string,
state: AgentState
): AlignmentResult {
// Score how well current action serves original goal
const alignment = scoreAlignment(currentAction, originalGoal);
if (alignment < DRIFT_THRESHOLD) {
return {
drifting: true,
suggestion: `Current action "${currentAction.name}" may not serve goal "${originalGoal}"`
};
}
return { drifting: false };
}
Architectural Solutions
1. Defensive Design
Assume LLM hallucinations will occur. Build systems that handle them gracefully.
// Don't trust LLM output directly
const llmSuggestion = await llm.suggestAction(context);
// Validate against allowed actions
if (!isValidAction(llmSuggestion)) {
return fallbackAction();
}
// Constrain to safe parameter ranges
const sanitizedParams = constrainParameters(llmSuggestion.params);
2. First-Class Verification
Make verification a core feature, not an afterthought.
class ReliableAgent {
async execute(task: Task): Promise<Result> {
// Step 1: Understand
const understanding = await this.understand(task);
if (!understanding.confident) {
return this.requestClarification(understanding.questions);
}
// Step 2: Decide
const plan = await this.decide(understanding);
// Step 3: Execute
const execution = await this.executeWithRetry(plan);
// Step 4: Verify (MANDATORY)
const verification = await this.verify(execution, task);
if (!verification.success) {
return this.handleFailure(verification, task);
}
return execution;
}
}
3. Graceful Failure and Escalation
Know when to stop and ask for help.
const ESCALATION_TRIGGERS = {
consecutiveFailures: 3,
confidenceThreshold: 0.5,
riskLevel: 'high',
};
function shouldEscalate(state: AgentState): boolean {
return (
state.consecutiveFailures >= ESCALATION_TRIGGERS.consecutiveFailures ||
state.currentConfidence < ESCALATION_TRIGGERS.confidenceThreshold ||
state.currentAction.riskLevel === ESCALATION_TRIGGERS.riskLevel
);
}
4. Observable Behavior
Comprehensive logging for debugging and improvement.
interface ActionLog {
timestamp: Date;
action: string;
input: any;
output: any;
preChecks: CheckResult[];
postVerification: VerificationResult;
duration: number;
confidence: number;
}
Improving Per-Action Reliability
To improve overall reliability, focus on per-action success rate:
| Current | Target | 10-Action Workflow |
|---|---|---|
| 95% | 99% | 60% → 90% |
| 95% | 99.5% | 60% → 95% |
| 95% | 99.9% | 60% → 99% |
Every 1% improvement in per-action reliability compounds dramatically.
Strategies:
- Reduce task complexity (fewer steps per task)
- Add pre-action validation
- Add post-action verification
- Implement retry with learning
- Use RALPH Loop for fresh context each task
The Reliability Stack
┌─────────────────────────────────────────────────────────────┐
│ Layer 4: Human Escalation │
│ "Know when to ask for help" │
├─────────────────────────────────────────────────────────────┤
│ Layer 3: Post-Action Verification │
│ "Confirm the outcome, not just the response" │
├─────────────────────────────────────────────────────────────┤
│ Layer 2: Pre-Action Validation │
│ "Check before you act" │
├─────────────────────────────────────────────────────────────┤
│ Layer 1: Task Decomposition │
│ "Small tasks = fewer failure points" │
└─────────────────────────────────────────────────────────────┘
Key Insight
Demo agents skip understanding and verification because those steps don’t look impressive. Production agents invest heavily in both because that’s where reliability lives.
Related
- Verification Ladder – Systematic verification levels
- RALPH Loop – Fresh context reduces context degradation
- 12 Factor Agents – Factor 9: Compact Errors, Factor 10: Small Agents
- Learning Loops – Encode failures into prevention
- Agent Swarms – Multiple agents improve confidence
External References
- Vinci Rufus – The Reliability Chasm in AI Agents
- Thought Leaders – People to follow in this space

